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A METHOD FOR THE DIRECT MEASUREMENT OF THE FORCE
ON A SATELLITE DUE TO ELECTROMAGNETIC RADIATION

INTRODUCTION

This report describes a proposed method for directly measuring the pressure of solar
electromagnetic radiation on a satellite. There are indirect radiometric approaches to this
problem, as well as the more direct method, explored here of measuring the mechanical
response. The radiometric methods involve comprehensive data collection of such quanti-
ties as the angular distribution of radiation diffusely reflected from different satellite ma-
terials vs angle of incidence and wavelength. From the data collected and the solar spectral
distribution, the force on a satellite could in principle be calculated on a computer, if the
precise position of all surfaces were specified. The analysis of the errors and difficulties
involved in such procedures is necessarily beyond the scope of this report. By reputation,
the difficulties are formidable in cases where an accuracy of measurement of a few percent
is the goal. Their careful appraisal would require another report as extensive as the present
one.

The method explored here would yield the quantity sought directly from the data after
a minor algebraic computation. It also allows a relatively simple cross check on its accuracy
in that an object of simple shape having a mirror surface of known high reflectivity could
be used in the measurement procedure. The measured force could then be compared with
the value computed from momentum conservation. The price paid for these advantages is
the requirement for a solar simulator large enough to irradiate the entire satellite cross sec-
tion and a vacuum test chamber large enough to house both the satellite and simulator.

This report develops the radiation force measurement procedure as it would apply both
to a laboratory proof-of-principle demonstration and to an actual satellite measurement.
However, as data obtained on ambient vibration from preliminary laboratory measurements
were only directly relevant to the proof-of-principle case, considerations pertaining to it are
numerically somewhat more detailed than those pertaining to measurements on actual satel-
lites.

BASIC CONSIDERATIONS

A description of the characteristics of the satellites to be calibrated is in order. The
devices would weigh from 200 to 600 lb and would have a central metal body surrounded
by several panels of solar cells which extend from it. The average diameter of the central
body would be about 1 m, and each solar cell panel would extend outward about 1.25 m
and be 0.5 m in width. The overall diameter of the device would then be greater than
3.5 m. The body itself might have a somewhat amorphous surface shape because of a metal
foil heat shield and assorted fixtures. In general, the distribution of forces due to the light

Manuscript submitted December 10, 1975.
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pressure would be asymmetric, resulting in a torque as well as a translational force. The
torque would be of no interest, however, and the measurement method should be unaffected
by its existence when it occurred. It is desirable to perform the measurement in as short a
time as possible, since the translational force must be measured for a large number of angu-
lar orientations of the device. The method of measurement should involve a laboratory pro-
cedure rather than measurements made on a satellite in orbit because perturbing forces other
than radiation pressure jointly influence the orbital motion.

The method of measurement proposed to satisfy these requirements is to hang the sat-
ellite as a one-dimensional pendulum and drive it at the pendulum resonance frequency by
chopping the output of a solar simulator. If the number of cycles of driven motion and the
resulting amplitude of oscillation are measured, the magnitude of the driving force can be
calculated from the solution to the equation of motion. The amplitude occurring after an
infinite number of driving cycles is finite because of the presence of frictional forces. This
limiting value for the amplitude is proportional to the driving force and inversely propor-
tional to the product of the frequency and the dissipation constant. It follows that the ob-
servability of the driven oscillation depends ultimately on the magnitude of response of the
oscillator to the ambient noise level. If its response to ambient noise is higher than the max-
imum amplitude of oscillation achievable for the driving force in question, the pendulum will
have to be isolated from its noise environment before its response to the driving signal can be
observed. Alternatively, it can be incorporated into a system arranged so that the vibrational
noise affects both the satellite pendulum and its motion detector equally, allowing the noise
to be subtracted out. This is the case when the detector is an interferometer in which the
test arm measures the distance between two frequency-matched pendulums, one of which is
the satellite and the other a dummy load of equal mass suspended so as to suffer the same
perturbations. With such an arrangement, the noise will be automatically "common moded"
out, and the signal-to-noise (S/N) ratio greatly increased.

In the following sections, the foregoing considerations will be developed in detail, and
estimates will be made of the physical magnitudes and precision necessary for the successful
realization of possible measurement options.

In the following section, expressions relating the square-wave driving-force amplitude,
the displacement amplitude, and the number of cycles of driven motion are obtained to-
gether with the allowable mismatch between the drive and pendulum resonance frequencies
for a given error resulting from the use of these expressions. Error magnitudes due to the
effects of damping and of period variation with amplitude are then derived for the measure-
ment of the pendulum resonance frequency. The fourth section deals with signal and noise
levels based on estimates of the forces on a solar-illuminated satellite of typical dimensions
and on a mirror illuminated by a 0.5-W laser beam, together with measurements of residual
noise oscillations of a laboratory pendulum. The S/N ratio for a projected laboratory simu-
lation of the method is found to be marginal. Mechanical common moding schemes to im-
prove the S/N ratio are considered, as well as corresponding accuracy requirements on the
pendulum lengths and temperatures, etc. Two optical monitoring systems are then de-
scribed, one of which is suitable for the measurement of small amplitudes and the other for
large amplitudes of oscillation. They correspond to the need to measure small relative pen-
dulum displacements as well as pendulum frequencies at relatively large amplitudes above
noise. Error limitations that may arise due to the existence of the radiometer force and to
the existence of typical imperfections in solar simulation are dealt with briefly.

2
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THEORY

Motion of an Oscillator With Square-Wave Driving Force

Although the expression for the amplitude of the damped harmonic oscillator driven
by a sinusoidal driving force is well known, a square-wave driving force would probably be
one's choice for use in an experiment. For a drive period of seconds, as would be neces-
sary in the present case, given the physical dimensions of the satellite and consequent length
of the pendulum, square-wave chopping of the light source could be accomplished with a
mechanical shutter. Thus, the key theoretical result upon which the whole method rests is
an expression for the displacement of the pendulum at the end of n cycles of the square-
wave driving signal. This will now be derived, along with other closely related expressions
of interest.

The differential equation of motion of a one-dimensional damped harmonic oscillator
is [1]

mx + Rx + kx = F(t), (1)

where m is the mass, R is a damping constant, k is a spring constant, F(t) is the driving force,
and x is the displacement of the oscillator. If the satellite is always illuminated from the
same side, F(t) is a square wave of amplitude F0 which is nonnegative. The normalized force
f(t) = F(t)/Fo is shown in Fig. 1 with the switching times indicated. The solution to this
equation can easily be expressed as an integral. Taking the Laplace transform of both sides
of Eq. (1) for zero initial conditions and solving for the transformed displacement gives

x(s) =-F0 T(s) (2)

where 2/r = R/m, w2 = k/m, F0 is the magnitude of the driving force, and the tilde is used
to indicate a Laplace transform.

Since the right-hand side of Eq. (2) consists of f(s) multiplied by another factor, the
convolution theorem may be applied to yield

(t - t')

x(t) = IF e l sin w1 (t - t')f(t')dt', (3)

where

/ ( 1 - T \)1/2
(JJ = no t 
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F= ILZ
2T 2T+T/2 3T 3TtT, (A-I)T (A- /2 )T

Fig. 1 - The normalized driving force on the satellite

The time t for which the value of the integral is desired is that at the end of the nth pulse
of the light source, i.e. at t = T(n - 1/2), where T is the period of the pulsed waveform. This
value of x(t) denoted by xn can be written as a sum of integrals over those segments of the
time domain in Fig. 1 for which f(t') is not zero. Thus

n

(F0M /"' i.

where

(j - 1/2)T (1r)- t] sin 1[(n - 1/2)T - t']dt'-

(j - 1)T

When the variable change t" = (n - 1/2)T - t' is made, this integral becomes

,(n -j + 1/2)T _"' 
= J =e sin coi t"dt".

(n -j)T

The integration may be carried out directly, yielding

=j ~ - 1 {e (-T/)(n - i + 1/2) i [1(n -j + 1/2) + fl

-e (TIT)(n -j) sin [w1(n - j)T + f} (4b)

4

I(t'
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where

sin r = (01

(I + Co 21)2

and
1

Cos = 

( +- J) 1/2 .

After summing the I as given in Eq. (4a), we obtain xn in the form

F0
-n CJ

n

112(~ 1 )1/2 

{e ( - sin [w1(n -j)T + fl

e(-TIT)(n - j + 1/2) sin [w1(n - j + 1/2)T + f-}-

When the summation index for fixed values of n is changed, this sum over j may be seen to
be equal to the following sum over 1,

n -1

= F0

1=0

{e sin (w,1 IT + t)

-e -(T/T)(1 + 1/2) sin [wl(l + 1/2)T + fi}-

5
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It is shown in Appendix A that

n-l

Y e sin (w1lT + 0)- 1 =

cos ¢
e ° sin w1 T-eTIT(n) sin coTn +e (T/T)(n + 1) sin w 1T(n -

1 - e TIT 2 cos co1 T + e-2 T/T

+ sin ~ ~1 - e TIT Cos co1 T - e -T/T(n) cos WTn + e (T/T)(n + 1) COS W 1 T(n -1)

1 - e-TIT 2 cos co1 T + e- 2 T/T

and

n-1

F1 e (-T/r)(l + 1/2) sin [wj(1( + 1/2)T + fl - 12 

1=0

e-T/27 Cos 2

+ e -T/2 T sin (I4

) leTIT sin coT- e (-T/T)nsin w, Tn + e(-T/T)(n + 1) sin cow1T(n -1)

+ t) {eTIT sin w1T 1 - e TIr 2 cos co,1 T + e 2 TIT

T' \ (i - e-TIT cos co1 T - e(-TIT)n cOs coTn + e(&T/T)(n + 1) cos coT(n

1 - e (-T/T)2 cos So T + e -2T/T

(5c)

In terms of -1 and Z 2 , Eq. (5a) may be written

(5d)= F0 ( I ( (Y,1 - 2)
Wim (1 + 212

A number of expressions of interest can now be calculated. First, one would like to know
Xn when the fundamental frequency of the driving force is tuned to the resonance frequency

6

(5b)
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of the pendulum, i. e. to angular frequency co,. This is the expression one would use in
determining the force on a satellite from experimental data. In this case AN T, = 2ir, and

F0 (1 + e T/2T)( - e Tin/T)
m o2 ( XlT (6)

The maximum displacement amplitude obtainable at this frequency, the value at n = io, 1s

x.(T 1 ) = F0 (1 + e 2 ) (7)

m ( 2 + W2) (1-eT)

Since in practical cases, T1 /r < 1, the exponential may be approximated by the first two
terms of its power series expansion. This, plus the fact that l/r 2 f C02, leads to the expres-
sion

2 F0
2 Fo r

IT wjR o2m T ' (8)
1

which except for the factor 2/7r, is the same as the amplitude at resonance in the case of a
sinusoidal driving force.

Effect of Frequency Variation of Driving Force

It is necessary to know the shape of the response function for small departures of the
driving period from T1 in order to know how precisely the driving frequency must be deter-
mined if Eq. (7) is to be used for the computation of F0 . This may be found with the aid
of the expressions for X, and 12 above, with n set equal to infinity. In this case,

F11 - Z2 =1 - _ e-T17' sin cAT
(1 - e T/T 2 cos cT + e 2T)(2 + )1/2

i T -e -TI23/ + e (-312)(T/T)]
sin -L j -(l e -Tl cos wpT

+ co1 cos -2 [e (-3/2XT/T)_ e -T/2T] + CO,

7
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We compute the value of this expression for T = T, + AT. After simplifying, we obtain

El- X2 =
1 X

(1 - eTIT 2 cos co, AT+e-2T/)( 1 + C0)

1 e -T/T sin c 1o AT +
I Tr

si OAT [e-T/2T + e-(3/2)T/1
2 L r I

- 1e -T/r cos wl AT - lcos 2wAT [e (-3/2)(T/7) - e -T/2T] + (9a)

The parenthesis in the denominator which contains the cosine term is of the resonance form
for small AT. This may be shown by replacing the cosine by the first two terms of its power
series expansion and obtaining the expression

1 - e -T/T 2 (1 - 2 (c1 AT)2) + e -2T/T

After rearranging terms, we have

(1 - e -T/T)2 + (wAT) 2 e -T/I (T)2 + (2 i AT)2 (9b)

since for the systems of interest here, T/r < 1. Now, the trigonometric terms in the numer-
ator of Eq. (9a) may be expanded to first order. This results in

1 AT C T ( e -(T/2r) + e -(3/2XT/r) \
eT 1 AT+ 1 2 J - 1

- CO1 (e -(3/2)(T/T) - e -(T/2T)) + Col

If the exponentials are expanded in turn and if we again use the fact that T/r is small, this
may be reduced to

2w,
- (AT+ T).

T
(9c)

8
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Substituting expressions (9b) and (9c) into Eq. (9a) results in

El - X2 = 2(cwl/r)(AT + T) (10)

[(T)2 + ((,AT)2] ( I + ,,2) 1/2

After inserting the value given by Eq. (10) into Eq. (5c), we have

x00(AT) = 2FO(AT + T)

m ( 2 + J21) T [()2 + (wi1 AT)2]

It may be observed that the maximum of this expression is offset slightly from AT = 0
just as in the case of a purely sinusoidal driving force [1]. Nevertheless, Cil is a convenient
angular frequency to measure and to use for driving the oscillator. Thus we normalize Eq. (10)
to Eq. (8). After dividing the former by the latter and neglecting 1/r2 compared to w2 in
Eq. (10), we obtain FAT

XOO T .(1

x0 0 (AT=O) 1 + A T)2

In Eq. (11), T may now be replaced by T1, the difference between them being negligible
to this order. One may now find the value of AT/T 1 , corresponding to a decrease in Eq. (11)
from unity to 0.99. Solving the equation xo00 /x0 (AT=0) = 0.99, we find that

AT _ 1

T, | 107lco* (12)

This is the same estimate that one gets by neglecting the AT/T in the numerator of Eq. (11)
at the outset, indicating that the shift of the actual peak of the response from the frequency
co is negligible in the present context.

Equation (12) is a worst-case estimate of the accuracy of the driving frequency neces-
sary for the use of the on-resonance equations. Since the damping times for situations of
interest are of the order of many minutes or hours, it would be unfortunate if it were nec-
essary to drive the pendulum into the saturation region in order to obtain a sufficient S/N
ratio for the measurement. The most desirable situation would be one in which the system
gave a measurable response after a driving time short compared to the transient response
time of the pendulum.

9
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To obtain an estimate of the necessary accuracy of the driving frequency for this case,
we must start again from Eqs. (5). For the case we are considering, IT < r, so the expo-
nentials may be ignored in El and 12* Under this condition, we obtain [2]

n-l

El = E sin (w 1IT + ¢) = sin

1=0

+ n-I
(~2

sin 2 WIT

co T) . W1T
sin 2

l w 1 T n - 1
sin 22

) sin 2

Wl T) W1 T -
sin 2

From these expressions we obtain

- 2 sin 2

- 12 w2T
sin -2

Substituting T = T1 + AT yields

n onlAT 1colAT
2-sin 2 cos 

( T2 + CO12 sin
Vl cos[(n - o ) T]

FI11\ AT1~.
+ 1 sin [(n -- 1W 1 -]T L 2 / 

Neglecting terms of the order of 1/r and 1/r2, we obtain after some further simplification,

sin nwlAT wi2 wAT
2 . 1 AT 4

sin 2

10

and

n-1

Z2 = a)0
1=0

sin [W1iT + WIT
(2

+ 01 =

sin -
4 cos + (n 1) - 1 T]
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Since we are interested in the behavior of this expression for small values of AT, we set the
cosine-squared factor equal to one and have for xn, 

2FOn /sin nwiAT\

x=- ) (13)n w2 nwAT/

From Eq. (13), we can obtain two results of interest, the value of xn for driving pre-
cisely on resonance (AT = 0) and the frequency accuracy required of the driving apparatus.
It is clear from the behavior of the (sin x)/x factor in Eq. (13) that to maintain the same
error size as n becomes larger, AT must be made smaller. In particular, for an error of 1%,
and after replacing sin (nciAT) by the first two terms of its power series expansion, we
have

1 - 6 (nw1 AT)2 = 1 - 0.01.

Solving for AT/T results in

AT 4 X 10- 2 1

T 4 2.5 X n (14)

This value for AT/T may be considerably larger than the value given by Eq. (12). The fact
that the necessary accuracy of the driving frequency changes with the length of the driving
time is physically consistant with the fact that time and frequency are conjugate variables
in Fourier analysis.

Measurability of the Period of the Pendulum Oscillator

In order to match the drive frequency to a given oscillator frequency, we must first
measure the oscillator frequency. If a pendulum is set in motion by some disturbing im-
pulse at t = 0, the frequency co may be determined by monitoring the motion. It follows
immediately from Eq. (3) that the motion of a pendulum after such an impulse is given by

F0 ___t

x(t) = -- e -t/r sin - (15)

If the time between two successive excursions to a small fraction e of the initial amplitude
is measured, the period T1 is obtained along with a small error from the slow exponential
decay of the oscillation. It is necessary to estimate the magnitude of this error, since it
effectively limits the accuracy with which the drive frequency can be set equal to ci.

11
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On two successive cycles, Eq. (15) gives

Fo /-(nTj + btn . ) r Fo
X m exp- sin- (si T (nT1 + tn)= -e

and

Fo f-(n + 1)Tj + Stn+1\ 27r Fo
- exp )sin T [(n + 1)T1 + 5tn+]= I e-

with the time between observations given by Tobs = T1 + 6tn+1 - Stn. These equations can
immediately be put in the form

(-6tn\ 27ratn 'nTj
exp 1 sin C=

and
/'-6tn+ isn 2irXtn+1 [(n + 1)T1

T r T1 L Tr

We assume that the measurements are made soon after the pendulum is set in motion,
so that nT1 /r < 1. Expanding the sines and exponentials in power series, keeping only terms
which are of first order in 6t, and subtracting the (n + 1)th from the nth equation leads to
the result

AT1 btn+1 - btn e T1

T- T 27r T (16)

Along the same lines, it must be considered that even in the absence of damping, the
pendulum is only approximately a simple harmonic oscillator. The intrinsic variation of its
frequency with amplitude must be examined over the range of amplitudes of interest. It is
shown in standard mechanics texts [1] that the period of a simple pendulum is given by

T = 4 T dn)
W° J0 (1 - k2 sin2o)1/2

where k = sin 0 o02 , 00 is the angular amplitude of oscillation measured from the vertical,
and the angular frequency c0 is the frequency of the pendulum for vanishingly small am-
plitudes of oscillation. Since k is very small in the present application, the square root may

12



NRL REPORT 7961

be approximated by using the binominal expansion and keeping only the first term. Thus,

T t- f1 (1 + I k2sin2) do

This may be immediately integrated to yield

T-To k2 (17)

to 4'

SIGNAL AND NOISE CONSIDERATIONS

Initial Deflection per Force Cycle in Satellite Case

The pressure exerted by a parallel beam of light on a totally absorbing surface oriented
so that it is normal to the beam is equal to the energy per unit volume p of the incident
radiation [3]. In turn,

W (18)

c

where W is the number of watts per square meter in the incident radiation and c is the speed
of light. To estimate the magnitude of the force due to the radiation pressure of sunlight on
the surface of a satellite requires that a value of 800 W/m2 be usedt for the irradiance. The
resulting pressure is 2.6 X 10-6 N/m 2 . The satellite is assumed to consist of a central body
plus two or more panels extending outward from it. The total area presented to the incident
solar radiation is assumed to be 4 m2 . Since we are interested in orders of magnitude, the
area could be increased by a factor of two or three without qualitatively changing the results.
From the above figures, the force on the satellite is F = pA = 10.9 X 10-6N. From Eq. (13),
with AT set equal to zero, the amplitude of oscillation vs the number of driving cycles may
be computed. A mass of 600 lb (272.2 kg) is taken as a representative value. If the pen-
dulum is 4 m long, its period is 4 sec and the angular frequency is 7r/2. With these values,

Xn = 3.24 X 10 2 n pm, (19a)

where n denotes the number of driven cycles of oscillation. It is interesting to measure this
deflection in terms of the wavelength of He-Ne laser light at 0.6328 Pm. The result is

Xn/X6 3 2 8 = 5.1 X 10- 2 n. (19b)

tThe solar constant or the power per unit area at normal incidence at the top of the atmosphere is about
1400 W/m2 and is constant to 3.5%. The distinction for the estimates made herein is slight.

13
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The ease or difficulty in detecting a pendulum displacement amplitude of this order
of magnitude depends on its residual noise oscillation, which in turn results from the vibra-
tional noise in its environment.

Noise Measurement for Simulation Experiment

To get some idea of the order of magnitude of the noise to be expected, at least in a
simulation experiment, we carried out a preliminary measurement. A small pendulum was
suspended from the end of a vibration isolation table and its period, damping time, and
residual noise oscillation were measured. The motion of the pendulum was monitored using
moire fringes from two 39.37-cycle/cm Ronchi rulings imaged one upon the other at unit
magnification. The gratings, one attached to the pendulum and the other stationary, were
illuminated by a 5-mW He-Ne laser beam. When the pendulum was set into oscillation, its
changes in position resulted in changes in transmission of the Ronchi ruling pair. These
transmission changes were monitored with the aid of a pin-diode detector and oscilloscope.

Two pendulum bobs were used, a heavy bob consisting of a lead brick (10.4 X 103 g),
and a light bob made of aluminum (92.6 g). The decay constant for the heavy bob was
6.5 X 103 sec, whereas that for the light bob was 750 sec. The lengthening of the decay
time with increasing mass is not unexpected, since 1hr = R/2 m. (One would intuitively
expect the dependence of R on m to be weak enough so that r increases with increasing
m. R for the large mass was 10 times greater than for the small mass, so that the expec-
tation was fulfilled.) The residual motion of the heavy pendulum was approximately 10 gm
peak to peak, while for the light pendulum it varied from 3 to 11 pUm peak to peak. Qual-
itatively, the pendulums appeared to respond to vibrations associated with events such as
people walking in the halls, doors slamming, etc. When the amplitude of oscillation had
reached a minimum level, an event of this type seemed to precede an increase in its magni-
tude.

It is useful to consider the implications of the above laboratory noise observations for
a simulation experiment of the whole satellite calibration scheme. Having a miniaturized
laboratory version of the procedure would be most desirable, to provide a proof-of-principle
demonstration of the method before going to the expense of acquiring a solar simulator.

Deflection per Force Cycle in Proof-of-Principle Experiment

In a laboratory proof-of-principle experiment, an argon laser could be used to drive a
small laser cavity end mirror mounted on a pendulum platform. Because of the low heating
which would occur in the case of a low-loss mirror, the experiment would appear to be
feasible in air if well shielded from drafts.

The force on the reflector would be the integral of the pressure exerted by each element
of the beam-intensity profile, or

1 C p
F =-J w(x, y)dxdy (20)

C JW 
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where P is the total power in the beam. In addition, for a reflector, the result needs to be
multiplied by a factor of 2 as compared to an absorber. Thus, in the case of a 1/2-W laser,
the force would be

F = 3.3 X 10-9 N.

Assuming a pendulum mass of 0.4 kg and a period of 1 sec, one finds from Eq. (13) that

Xn = 0.4 X 10 3 num (21a)

or
xn

n = 6.6 X 10- 4n. (21b)
X6328

Since this expression is much smaller than the noise residual oscillation measured for rea-
sonable values of n (less than 100), the maximum possible amplitude of oscillation for the
given force must be inquired about. This may be computed from Eq. (8) if R is known.
The value of R obtained for the small pendulum used in the preliminary experiment will be
used for the estimate, even though its mass was 0.1 kg rather than 0.4 kg as in the present
case. The value of R obtained was R = 1.38 X 10-4 kg/sec. With this value, x = 2.42 pum.
Thus, a S/N ratio of somewhat less than 1 may be achieved after the transient dies out, or
after about 50 min. This is clearly a very unfavorable result. A method for dealing with
this problem will be discussed in the next section. We wil finish this section with the de-
velopment of a noise scaling relation.

Noise Scaling

Every environment is unique in its generation of vibrational and acoustic disturbances.
Further, the response of a pendulum to a noise environment depends on its physical char-
acteristics as an oscillator. Thus, the observations made with a pendulum of a given mass,
frequency, and damping time on a vibration isolation table in a laboratory are not neces-
sarily representative of those that would be made with a pendulum of different character-
istics located in a large environmental test chamber. To connect the latter with the former,
a scaling law is necessary in addition to measurements of the important noise parameters.
There are two limiting forms of scaling law which may be derived. One corresponds to the
situation in which the noise bandwidth is much narrower than the oscillator bandwidth, i. e.,
the pendulum is driven by a sinusoidal driving force. This case is trivial and immediately
follows from the equation of motion. The second case is that in which the bandwidth of
the noise is much broader than that of the pendulum. The scaling law for this case may be
derived as follows.

We write Eq. (1) in terms of its Fourier transform to obtain

{XT (-47r2V2 +-R-27riv + 47r2V2) e2 7ivtdv = ffT(v)e2iivtdv,
0 0
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where the T subscript on x and f indicates truncation of the respective functions outside of
the time interval -T to +T. The caret over the x indicates the Fourier transform. From this
it follows that

~T()1 fT(P)

m [4,.2(V2 - V2) +R-27ri]

Using Parseval's theorem, we obtain

T XT (t) 2 XT(P)XT(V) 2 I ftT() 12

£ 2T dt = 2 -2T dv =2 2 2T .fT JT 2 2TM2 (CO 2 _ (,02)2 +R m _]

where the bar above the integrand indicates the ensemble average. The limit as T - oc yields
the mean square oscillation due to the noise driving force. Thus,

2 =[NI __ _ _ _

XN m i
2 7T 0 (w, _ w2)2 +(R w)2

where I N 12 is the infinite time ensemble average of the noise power density assumed white
over the bandwidth of the oscillator. The integration over w may be performed to yield
vrm/2wA7. The final value for the rms noise is thus

VXN= |/ fN |. (22)

Note that, in the case of noise introduced by pivot vibration, I fN I = mcw2 I to I where
l to I is the ensemble-averaged pivot amplitude. The complex oscillator response to a sinus-
oidal signal of amplitude f, at angular resonance frequency wo is xs = flRwoj, which leads
to an rms value for the signal response of

X 1 s (23)

The S/N ratio is thus

4V'~~- f~l/ 4
- fNW V oX2 2/; IT (24)

Unfortunately, since R may depend on m, these formulas must be used with caution.

16
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MECHANICAL METHOD TO IMPROVE SIGNAL-TO-NOISE RATIO

'A,

Simple Common-Mode Method

The various aspects of pendulum response, S/N ratio, etc., have been treated as though r,
the pendulum were constrained to move in one dimension only. An arrangement of the
pendulum supporting wires which results in such constraint is drawn in Fig. 2. Shown is a
five-stranded support system, arranged so as to provide a three-point suspension. In each of
two pairs of two strands, the strands meet at a point at the platform with a large angle be-
tween them. The two support V 's arranged in this way lie in parallel planes. The third sup-
port point is held by a single vertical strand which lies in a plane parallel to the other support
planes. The pendulum can only move in a circle which lies in a plane perpendicular to the
support planes. An added benefit of this arrangement is that there is no rotation of the
pendulum about an axis through its center of mass. The only motion allowed is pure trans-
lation in a vertical circle. Since the amplitude of oscillation being considered here is very
small, the first-order approximation to linear motion is a very good one.

Fig. 2 - Five-stranded support system to con-
strain pendulum to motion in a plane [4]

The linear motion allows consideration of a mechanical noise-reduction method as fol-
lows. Consider two pendulums suspended from a rigid though movable (due to noise) sup-
port plane as shown in Fig. 3. The t coordinate indicates the horizontal displacement of
the support plane with respect to a Newtonian coordinate system. The coordinates xl
and x2 indicate horizontal displacements of masses ml and M2 from a vertical line fixed
with respect to the upper support plane. The position of either mass with respect to the
Newtonian coordinate system is xl + t, where i = 1,2.

Velocity-dependent damping forces of two kinds are assumed. They consist of internal
friction in the support wires, and air friction if the system is not in vacuum. For a system

17
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Fig. 3- Common-moding arrangement without isolation

in vacuum, internal friction is presumably the only dissipative force, and since this must de-
pend on displacement of the masses with respect to the vertical, only the x coordinates can
be involved. Therefore, any damping coefficient associated with the t coordinate must be
zero. If the pendulums are in air, friction from motion through the air arises from changes
in both the x and t coordinates. Since this case might arise in a laboratory simulation of
the procedure, it will be considered ini tially. Thus, for ml the equation of motion is

mlcw, + t)=-(rlxl+ rct)- T101, (25a)

and for M2 it is

M2(x2 + t)=-(r,2x2 + rqt) -T202 + F2- (25b)

The subscripted r's are damping coefficients. Employing the usual small-angle approximations
yields T, = mlg, T2 =M2g, °1 = x1111, and 02 = X2/12. If these substitutions are made, and
if g/l1 = C02 and 9/12 CO 2 where the c's are the angular frequencies of the undamped pen-

1 29~~~~~~~~~/

dulum oscillation, the equations of motion become

xl + + xl+ +- + c)2xl = 0 (26a)

and

X2 + ) +-X 2 + m T 2X2 = F 2- (26b)

Thesuscrptd 's redapin ceficint. Mploigteualsl-nleprxmtos
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If the pendulums are matched so that their masses, lengths, and air friction are identi-
cal (in vacuum, only their masses and not their shapes need be identical), the equation of
motion for the relative coordinate x2 - x1, which results from subtracting the above equa-
tions, is

___ rx d2
dt2 (X2 -x) +- dt(x2 -x) + wo(X2 -xl) = F2 (27)

When the pendulums are matched, motions of the upper support plane have no effect on
the motion of the relative coordinate which now responds to the force on one pendulum
bob as if it were in a noise-free environment. Thus, all the analysis following Eq. (1) applies.

Unfortunately, this state of mathematically perfect noise compensation cannot in prac-
tice be achieved due to mismatches of the resonance frequencies and decay times of the two
pendulums. For a given degree of noise rejection, a particular accuracy of frequency and
time-constant matching of the two pendulums will be required. This may be computed from
Eqs. (26). If one assumes that the support plane specified by coordinate t undergoes the
sinusoidal motion t = C exp(iwt), then the coordinates xl and x2 will respond as xl =
A exp(iwt) and x2 = B exp(icot), with complex amplitudes A and B determined by Eqs. (26).
Substituting the assumed forms into Eq. (26) yields

A (W2 _ w2 + 2_i£) = (_ iwE + w2) C

and

B (W2 - w 2 + 2 cw) = (-1 iw, + w2) C.
2 T2 )(m)

Since (rt/m)w is very small compared to 2 , it will be neglected. Thus for the complex
relative displacement amplitude one has

B-A= w2 C 2 2 (28)
9@2 _ 2 + 2+ w e ( 2 8

We now make the substitutions w2 =co2 + Aand 1/T2 = 1/T1 + 1/6, where A and 1/6 are
small. We further define col w 2

+ (2/r 1)iw Z and A + 2iw/6 D. With these defini-
tions, Eq. (28) becomes

B -A- w02CD/Z2 (29)
1 + DIZ s(9

where A = cw2C/Z. This amplitude is the noise amplitude that would be observed in pen-
dulum 1 alone due to vibrational motion of its pivot at frequency c1 . (Under the

19



L. SICA

conditions of laboratory measurement mentioned previously, the magnitude of A was approxi-
mately 10 prm.) Thus, the ratio (B-A)/A specifies the degree of noise reduction brought
about by the compensation scheme. The smaller this number is, the greater the chances of
successful completion of the measurements. Initially it will be set equal to 10-4.t CoM-
putationally, the reciprocal of this ratio is easier to manipulate than the ratio itself. Since
it is complex, we set it equal to 104 exp(iO). Thus,

-A 1 + Z = 104ei0 . (30)

or, approximately

Z t 104eiO.
D

Further,
Fz z*l1/2 C[(X2 _ C2) 2 + 4w2/T 2 ] 1/2rz 1 1 = 104. (31a)
LD D*J [A2 + 4w2/52] 1 /2

It is now convenient to assume that

4w2 /6 2 = A2. (31b)

We consider two cases. In the first, we set the drive frequency equal to VfTwj, and in the
second, equal to wl. In case 1, the term in 1/r 2 in the numerator is small compared to the
term in w41 and we find immediately from Eq. (31) that

1'~~~~~~~~~~~~~~~o12

A = . (32)
a,/2 10 4

Since A = 2w 1dw1 and dwl = wldT 1 /T1 , then A 2co2wdT/Tj, and from Eq. (32),

dT 1 1 (33)

T1 2-V104

This degree of precision is relatively high but probably achievable. (The means for achieving
it will be discussed in later sections.) We now obtain the precision requirements for 1/8.
From Eqs. (31b) and (32), we have

tA noise amplitude of 10 pm in this case would be reduced to 10-3 ptm = (10-3 pm/0.63 Pm) fringes =
1.6 X 10- 3 fringes. From Eq. (21b), we find that a SIN ratio of 1 would occur after three cycles of
driving the pendulum.
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1/ rw 1

1/r 4 X 10 4

r will be assumed to be of the order of 103 or greater on the basis of the preliminary labo-
ratory measurements, so we find the deviation 1/8 in the. line width 1/r of the two pendulums
to be

1/8 _I (34)
1/r 40

or greater. Thus, the damping times need not be matched with the same precision as the
center frequencies or periods. By suspending the pendulums identically, we will assume that
the precision requirement of Eq. (34) can be met.

We now consider the second case, that in which the noise frequency is precisely tuned
to the pendulum resonance at w1 . Again, for convenience, we assume that 4Cw2/82 = A2.
Setting w = w1 in Eq. (31a) leads immediately to

2w1 = 4

Using the fact that A = 2w 2 dT 1 /T1 , we obtain

dT1 1
(35)

T1 V2cw 1 107

for the necessary accuracy of frequency matching between the two pendulums. We see that
on resonance, due to the amplification of the pivot motion by each pendulum, the compen-
sation must be extremely precise, probably too precise for practical application. The cor-
responding requirement on 1/r1 can be found as before;

1 A dT 1
8 2w1 - 1 V2107

Hence,

1/8 r 1

1/7- A/5 1 07 X2-1 04
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The requirement on the line width is, as in the nonresonance case, much less severe than the
tuning requirement. That this result is physically reasonable can be seen by inspection of
Eqs. (26a) and (26b). The velocity terms are multiplied by constants r /m which are assumed
to be of the order of 10- 3 or smaller. These terms consequently affect the motion to a rel-
atively small degree.

Common-Mode Method With Isolation

The failure of the common moding scheme, shown in Fig. 3, to effectively shield the
system from noise frequencies at wa may be ameliorated by the arrangement in Fig. 4. With
small-angle approximations as before, the equation of motion for the t coordinate of the
intermediate platform is given by

Mi = ig-[ + mg L (2in, + m)-j- (g - t').
1 L2I

II
I I I I

I I

Fig. 4 - Common-moding arrangement with isolation
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The following definitions allow a more compact notation:

gC 2, g = @2Iw 0 , Lyw
g = 2

M = 2m, + m,
Ml
_= mand M AO.

M

After these substitutions have been made, the equation is transformed to read

-ot _ pC2X, - pW2 + C20 = C2°1'wx1 p 2X2 w0 (37)

where coordinate t' is in effect the driving force. The equations for xl and x2 are the same
as Eqs. (26a) and (26b), and if the two lower pendulums are exactly matched, may be sub-
tracted as before to yield Eq. (27). We are interested in the vibration isolation capabilities
of the system in the face of a slight mismatch of the frequencies of the lower pendulums,
w1 and Cw2 . Making the substitutions x1 = A exp(iwt), x2 = B exp(icot), t = C exp(iwt)
and tl = t1 exp(iwt), one obtains the following equations in the coefficients:

-pw02A

(_w2 + C02 +-)A

-pw2B +(w _ to w2) =w2,

+L +-) C = 0, (38a)

(_W2 +- c + w)2 B +( w2 +-4) C = 0.

For simplicity, r,/mi has been set equal to r/m 1 = 2/r. It is useful to contract the nota-
tion by using the definitions

Zi = _w 2 + Cw2 + iw2/7, Z2 = _CO2 + W2 + iw2/7,

and

Z = Co2 _ 2z 0 -. t pCw. (38b)

Then we find that

A = E W20t [Pz2(-W2 + iw2/r)],

23
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and

B =- 0E (-w 2 + iw2/r), (39b)

where E is the determinant of the coefficients, given by

E = Mw2(_C02 + icw2/T)Z2 + Z1 [,uW2(-W2 + icw2/T) + ZZ2I. (39c)

It is useful to examine the behavior of A and B without damping (T = oc) for C1 equal
to Cw2. In this case,

A =B= W
-2pc2o20 + (o2 _ , 0 W2 )(-co 2 + W2)

Further, when the noise oscillation occurs at w = w1 , which is a resonance frequency of the
system,

2 to
A B coo

The fact that the motion is finite indicates that the resonance mode cannot be driven
by the force t'. This is in agreement with intuition, since in the normal mode at frequency
w1 the two lower pendulums must move in exactly opposite directions, with the upper plat-
form stationary. But the only way that the pendulums can experience forces due to the
oscillation of t' is through the motion of the upper platform. Hence, this mode cannot be
driven by coordinate t . We therefore expect the system shown in Fig. 4 to be consider-
ably more immune to vibrational noise at the signal frequency w1 than the previous system.
To calculate the precise degree of noise rejection, we return to Eqs. (39) and form the dif-
ference B - A as was done previously. This difference coordinate should be compared with
the response of a nonisolated pendulum with the same resonance frequency. This response,
denoted by AO, is

22t
2 _ w2 + 2iwlT

Using the expressions of Eq. (39) yields (B - A)/AO, the noise rejection ratio;

B-A 2~

A0 =w 2 E (-W2 + iw2/r)(w2 _ ).0)

For convenience, w2 is taken to be 2w 2, which implies that the length of the upper pendulum
0 1

is half that of the lower. It is now necessary to evaluate Eq. (40) for different values of
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(w2 - wl)/lw1 , with w set equal to each of the roots of E in turn in order to examine the
noise rejection of the system at each of its resonance frequencies. The resonance frequencies
are found from Eq. (39c) with r set equal to infinity. Since E is a cubic in w2, the algebra
involved in explicitly writing Eq. (40) with X = jj(w 1, w2 ), = 1, 2, 3, where w(Cw 1, W2 )
is a root of E, is prohibitively difficult.

Therefore, it was decided to obtain the results numerically. A program was written
which did the following. For given values of r, u, po, and wl, an initial value of w2 was
computed which differed from w1 by one part in 104. Roots of E with r = -o were then
computed, and with co set equal to each root in turn, I (B - A)/Ao I was computed and com-
pared to 10-4 . If the rejection ratio was larger than 10-4 for any of the roots, a new value
of w 2 was computed whose deviation from w1 divided by w1 was half the previous value.
The computations of the rejection ratio, for this better-matching pair of frequencies, were
carried out and the process was repeated until the rejection ratio was smaller than 10-4 for
each root of E for a given pair of frequencies w1 and w2 . The important results are shown
in Table 1. The upper section of the table labeled satellite corresponds to a value of 10 for
the satellite-to-upper-platform mass ratio. Values of p and go can be computed from the
mass ratio. The periods and corresponding frequencies are computed from A, with cwl = 2
= 27r and r = o. The lower half of the table labeled simulation was computed using a satel-
lite-to-upper-platform mass ratio of 1/20. The terms satellite and simulation have been as-
sociated with these mass ratios, since they are the ratios which have resulted from initial
mechanical design considerations applied to the two cases.

Table 1 - Noise-Rejection Ratios for Various
Degrees of Frequency Mismatch

25

T(1) |(1) A T(2) v(2) Al2 T(3) A(3) | (( 2 -

Satellite po = 0.0476190476

1.0 1.0 < 10-4 1.2 .833 < 10-4 0.12 8.33 < 10-4 < 1
6 X 10

10-4 '10 2.5 ______

4 X 104

4X10- 4 0.5 10 -

Simulation po = 0.9090909091

1.0 1.0 < 10-4 1.04 .961 < 10-4 0.65 1.53 < 10-4 < 6 X 107

10-4 . 0.03 0.4 1
3 X 100

1o--3 0.26 3.1 1
4 X 104
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It is immediately clear from looking at the table that it is impractical to demand a re-
jection ratio smaller than 10-4 for each of the three resonance frequencies, since the fre-
quency match Of w2 and c,1 would then have to be closer than 10-7. A more reasonable
strategy would seem to be to demand a high degree of rejection for noise at the signal fre-
quency v(1), and then to use electronic notch filters to eliminate noise at the other two
resonance frequencies. The table shows that in this case the requirements on (o 2 - col)/wl
are relaxed to the point of tractability since the periods of repetitive waveforms can be
measured to 1/105, and waveforms for timing purposes can be synthesized to the same ac-
curacy [4]. Electronic notch filters can be constructed to reject the output resulting from
noise at the resonance frequencies corresponding to roots 2 and 3 in the satellite case since
these are reasonably well separated, but this is considerably more difficult in the simulation
case. It might prove necessary to increase the mass of the simulated satellite in this case in
order to increase the separation of the resonances frequencies. A mass ratio m1 /m = 0.5
results in a separation of 13% for the two closest frequencies, which is probably great
enough to allow the design of a notch filter to reduce response at the nonsignal frequency
by a factor of 10-4 [4] while not substantially affecting that at the signal frequency. It
should be noted that for the present mechanical arrangement, there is a maximum attain-
able separation for the two closest roots, given the possible range of variation of p0 . This
can be found from the expression for E in Eq. (39c) by setting w2 equal to Co1 . For this
condition, and with T set equal to infinity, one obtains

EW2=w 1 = (-X + C2)(goX2 - 3CX2 X + 2X14) (41a)

where x The roots of this expression are easily found to be

2 .... 2Fr 3±(9 - 8po)1/21
xwl= C and x-c= 2gWJ 

x=1 an 1 L 21-o (41b)

The root closest to that corresponding to the signal frequency w1 results when the minus
sign is taken. For go = 1, this root is x = w2l, while in the limit Mo g O.x = 2/3X1 or
/Y = 0.816w 1 . Thus, the largest frequency separation achievable between wa and its near-
est neighbor is about 18%.

Additional Frequency-Matching Criterion

There is still another error component similar in nature to that leading to Eq. (12).
It is the change in the overall response of the relative coordinate of the two pendulums due
to a slight mismatch of their frequencies, even though the driving force is exactly on the
resonance of one of the pair. We will compute the error for the infinite time case and as-
sume that the precision required in the finite time case is less, as in the situation existing
between Eqs. (12) and (13). The case in question is readily treated by a modification of
Eq. (38a). These equations describe the motion of the triple pendulum due to sinusoidal
oscillation of the ceiling of amplitude t;.
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In the present case, t;is set equal to zero, and the amplitude f of a sinusoidal signal is
inserted as the right-hand side of the third equation of the set. By defining z3 = -co2 + iw2/r
in addition to the previous definitions for z 1 , Z2 , and z, we obtain the compact equations

_pIW2A -_o2B + zC = 0,

z1A + z 3 C = 0,

z 2B + z 3 C = f (42a)

Using determinants, one immediately obtains

E 2 (42b)
A- E

and

B = E (A1O 2Z3 + ZZ1)I

where

E w = z3z 2 + Z1(AC2Z3 + ZZ2). (42c)

The measured response, for w2 # c1 , is B - A, or

B - A f [pZ3((c2 + w02) + ZZ1 (43a)

The formula used for computation in ignorance of the frequency mismatch would be
that obtained by setting w2 = CO1 in Eq. (43a), or just

(B - A) 2 1 = z (43b)

The subject of the present inquiry is the ratio of Eq. (43a) to Eq. (43b) when the driving
frequency is assumed to be at w 1 . Specifically, the ratio is

(B A 1 E Z3( Co)2 + W2) + ZZ1 * (44)
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Replacing cA by w2 + A, we may write

2~~ r 1lz+zz+l,
E = z1 (2gcuwz3 + ZZl) r- A I 2 +l

Z1(2gI()Z 3 +zz 1)
(45a)

Similarly, the numerator of Eq. (44) may be written in the form

Z1(2Pz3 W 2 + ZZ) [1 + 23 ']- (45b)

It is now necessary to evaluate z, z 1 , and Z3 , at w = w1 . We have Z3 = -wcj2 + iw 12/1r 
-o 2 since r ; 103 s, z = 02(2 - go), and z1 = ico12/r. After expression (45b) is divided by

1 ( )d vs z 1
Eq. (45a) and the values for z, zj, and Z2 are inserted, Eq. (44) becomes

1 +

B -A -2,uw4 + 2co3i(2 - go)/7

A(-PW4 - 2piCO3/r + 2ico3(2 - polr)1 +-I1 
12iw1 (-2pco4 + 2ico3(2 - po)lr)

T 

Evidently, terms in 1/T in the sums may be dropped so that the result simplifies to

(B -A = (1 + A/2wj2)(1 + AT/2iC12)-1 .

We now assume that A < 1/T so that the second parenthesis can be expanded by using the
binomial expansion. It easily follows that

B-A |
I(B -A)2 I 1

(45c)1 +
8w4

1

For a 1% error resulting from the incorrect use of the expression for (B - A)2 I 1,

Ar = 10-1.
Co12
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Since A = 2C 1dco1 , and dT/T = dcol/cil,

dT 1
dT ;7r-1 (46)

Time-Saving Method

An additional technique may be employed if the noise in a particular environment turns
out to be much larger than that considered here after use of the noise-rejection scheme but
is still small compared to the maximum signal deflection obtainable. In this case the pendu-
lum would have to be driven through many oscillations before a really useful S/N ratio could
be achieved. It would appear that measurement time could be saved as follows. The noise
motion of the pendulum is monitored and the phase precisely determined. (For times short
compared to the damping time, the motion should appear sinusoidal.) Relatively precise know-
ledge of the phase is used to fix the instant of initiation of the first signal-driving pulse so
that the response to it is 7r/2 rad out of phase with the noise oscillation. The output signal
of the pendulum motion transducer is then fed into a phase-sensitive detector which greatly
reduces the noise output after a very few cycles. The outcome of this procedure should be
to achieve a relatively high S/N ratio using much shorter observation times than would other-
wise be necessary.

An example will make this clearer. Suppose that in the case of the simulation experi-
ment, for which the maximum amplitude response was calculated to be 2.42 pm, the noise
after rejection was 2.4 X 10-2 pm, so that the intrinsic S/N ratio was 100/1. Unfortunately,
the amplitude of the response of the pendulum, according to Eq. (21b), would be 6.6 X 10-4
fringes per signal pulse, so that to attain an amplitude of 0.024 Am/0.63 pm = 0.04 fringes,
or a S/N ratio of 1, would take about 60 pulses. But, if the signal were phased to be in
quadrature with the noise oscillation at t = 0, the noise would no longer have the advantage
of having been on for a long time compared with the signal and would be quickly integrated
to zero.t

Mechanical Requirements for Frequency Matching

Signal-to-noise requirements for this problem dictate that the frequencies of the two
pendulums be matched as precisely as possible. Based on considerations given in previous
sections and the data shown in Table 1, we will take as our design goal a frequency match
of 1/105 for the simulation case and 1/104 for the satellite case. A number of general
mechanical tolerance relations, which were derived in the third section, as well as certain new
criteria, take on concrete numerical values in the context of these choices for the noise-
rejection ratio.

tThis technique depends on the noise having a sinusoidal rather than an impulsive character. It is also
assumed that the internal noise of the motion transducer is much less than the residual noise oscillation
of the pendulum system. The latter condition is easy to fulfill.
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A primary consideration is the precision of frequency definition of the pendulum of
finite amplitude without damping. This is given by Eq. (17). The worst case is the frequency
measurement of the simulation experiment. Appropriate to this example are an initial pendu-
lum displacement of 0.5 mm and a pendulum length of 25 cm. The corresponding angular
displacement 00 is 2 X 10-3 rad. Since k = 0 o/2, k = 10-3 rad, and k2 = 10-6 rad2, the varia-
tion of the period of the pendulum is 1/4 X 106, which is 40 times smaller than necessary
even for this very large displacement.

The next consideration is whether the finite line width of a pendulum with dissipation
is consistent with the design goal. This limitation to the precision of measurement is given
by Eq. (16). In this equation, e is the fraction of the peak amplitude necessary to trigger
the clock used to measure the period of the waveform, T1 is the period of the pendulum,
and T is its damping time. Again we consider the simulation to be the worst case. If e = 1/20,
7 = 103 sec, and T1 = 1 sec, then the error in measurement is approximately 1/105.

The most basic requirement, the stability of the frequency of the oscillator and its re-
sulting measurability, seems to be met. Before the allowed precision can be realized, how-
ever, the length of the pendulum must be precisely adjustable. Since T = 27r(l/g)1/2, it follows
that dT/T = + 1/2dl/l. For dT/T = 1/105, we have dl/l = 1/5 X 104. In the simulation case,
1 = 25 X 103 Mm, and dl = 0.5 Mm. This is well within the range of differential screw mi-
crometers. In the case of the satellite, dl is much larger, although the mass to be supported
in this case is also much larger.

The specification of dl/l necessarily implies a requirement on the temperature stability
of the system. This is readily determined from the standard equation for the differential
change in length in terms of the temperature coefficient of expansion oa and the tempera-
ture change dT or, dL = LoidT. For high-carbon steel wire, ae is commonly of the order of
10-5(k-1 ). Thus, dL/L = 10-5 dT, so that the allowed temperature variation is about 1 kelvin.

The remaining effect which could alter the length of the pendulum is creep. For carbon
steel wire, work hardening after the initial strain causes the creep to approach zero [5].
Since whatever creep there is would tend to be the same for both pendulums, it would appear
that this problem should be manageable so far as the length match required for noise rejec-
tion is concerned.

The error in using the resonance equation due to imprecise location of the frequency of
the driving signal is 1% for the accuracy criterion of Eq. (12). For 7 = 103 see and W1 =
27r Hz, we obtain dT/T - 1/6 X 104. However, this requirement is more stringent than is
necessary to satisfy Eq. (14). If the frequencies are matched initially with sufficient pre-
cision to realize a large noise-rejection ratio, their subsequent drift, if the same for both, as
would be indicated by the continued rejection of noise, would be unlikely to be large enough
to cause errors due to the use of Eq. (13) with AT set equal to zero. Last, we consider the
frequency-match error criterion for the use of Eq. (43b). This is given by Eq. (46). For
r = 10-3 sec, we have dT/T t 1/104, which is not more stringent than any of our other re-
quirements.
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OPTICAL MONITORING SYSTEM

Interferometer

The method of measuring the difference coordinate x2 - x1 of the two pendulums will
now be described. An interferometer is the natural choice of instrument for this kind of
measurement, and an arrangement which can satisfy the somewhat novel demands of the
observation at hand is shown in Fig. 5. The two-beam interferometer has been realized with
components having a large number of invariances to possible motions arising due to vibra-
tional noise. The initial beam, which enters from the lower right, is split by a Jamin plate
into two parallel, horizontal beams one above the other. These beams are incident upon two
roof-edge reflectors. The upper reflector is to be imagined as being attached to a pendulum,
the lower one as attached to the ground. After reflection, the two beams are incident on a
second set of roof-edge reflectors which send them to a second Jamin plate where they re-
combine and interfere on the surface of a pin-diode detector. The second pair of roof-edge
reflectors is arranged identically to the first, with the upper member of the pair attached to
the second of the two pendulums. The lateral displacement of the reflected beams requires
that the reflectors be located off center on the pendulum platforms. The resultant shift of
the center of mass of the pendulums may be compensated for by appropriate loading. With
this arrangement, it may be seen that there is no change in the optical path of the upper beam
when the two upper corner reflectors move in the same direction. However, when they move
in opposite directions, the optical path change is twice their difference coordinate. In use,
the upper roof-edge reflectors would be adjusted to reasonable alignment and the fine align-
ment of the system would be carried out on the fixed components below.

DETECTOR 1-- RROOF PRISM

JAMIN PLATE

JAMIN
PLATE

ED MODULATOR

Fig. 5 - Interferometer for measuring changes in the
difference coordinate
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One important optical component remains to be mentioned. This is an electro-optic
modulator to be placed in the lower beam. Its purpose is to furnish test signals for pre-
cise adjustment of the optical path of the lower beam and to furnish calibration signals dur-
ing the measurement procedure. The path difference between the two beams should be such
that the small oscillations in detected power that constitute the signal occur in the middle
of the ramp of the sinusoidal response of the interferometer. This condition can be realized
by driving the modulator so that the optical path oscillation is slightly greater than X/4 in
each direction. One of the lower corner reflectors is then translated toward or away from
the other until the signal from the detector, as seen on an oscilloscope, appears as in Fig. 6
with a notch symmetrically placed at either end of the ramp. When the oscillating voltage
applied to the modulator is decreased to a small amplitude, the waveform applied (a triangle
is very useful for this purpose) should be accurately reproduced in the output of the inter-
ferometer.

Fig. 6 - Detector output for optical path variation
greater than X/4 with interferometer in adjustment

Once the path change corresponding to a given voltage amplitude is known, any other
waveform amplitude may be measured. It is sometimes convenient to employ a calibration
signal of small amplitude and high frequency so that many cycles occur in one period of the
signal. Then the appearance of the calibration signal gives continuous information on the
state of adjustment of the system during the course of observations. If the amplitude of the
calibration signal is sufficiently small, it only marginally affects meausrement of the signal.

Invariance Properties of Roof-Edge Reflectors

The invariance properties of the roof edge reflectors must now be treated in detail since
they are very important in the rejection of possible spurious noise oscillations of the pendu-
lum platforms which could otherwise affect the measurements. We are not speaking here of
the modes of motion along the direction of propagation of the light beam, which have al-
ready been discussed. These are necessarily detected by the interferometer and are distin-
guishable from the signal in the detector output only by their frequency. We are consider-
ing small oscillations and rotations outside of the plane of expected linear motion, which
might occur because of a lack of perfect operation of the constraints described on page 17.

First we consider the effect of rotations of the roof reflector on the phase of the re-
flected light beam. See Fig. 7. Initially, a hollow roof edge composed of two intersecting
mirror surfaces is studied. The effect of the glass in a porro-prism roof-edge reflector will be
seen later.
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A

L

Fig. 7 - Diagram for calculation of effect of rotational orienta-
tion of roof edge on optical path

The path P from an arbitrary plane AA' to the roof edge and back is computed. Inspec-
tion of the figure shows that this is

P = 2S1 + h + I,

where

S1 = L - x cot 0

and

2 xh c= = - s
cos 0 sin 0 cos ¢} -

Further,

h + I = h(l + cos 20) = 2x cot 0.

Substituting S1 and h + I into the expression for P, we find that

P = 2L. (47)

This result means that the optical path is insensitive to both rotations and lateral translations
of the roof edge as long as the distance from the vertex to the plane does not change. Thus,
the effects of rotation of the platforms may be minimized by placing the vertices of the re-
flectors over the centers of mass of the pendulums.

A change in the separation S of the ingoing and outgoing beams would result in a rel-
ative shear of the interferometer beams upon recombination. The effect on shear of reflector
motion in a horizontal plain is easily computed. From the geometry of Fig. 7, we have
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xq xsin 20S = h sin 2¢, = x=in2 2x
sin 0 cos 0

The only differential relationship possible is

dS = 2dx. (48)

Hence, rotation of the reflector does not effect shear, but lateral translation does. The con-
tribution of small variations in shear to noise in the detector output may be computed as
follows. The light wave that has traversed the upper path (see Fig. 5) is represented by
U1 exp [(27riLj)/X] in the plane of the detector surface after the second Jamin plate. The
beam that has traversed the lower path is represented by U2 exp [(27riL2 )/X] in the same
plane. The sum of the two fields is thus

27riL 1 27riL 2

Ule + U2e

and the irradiance is

I U2 + U2UU2 +CO 2ir(L1 L2) (49a)

Note that the transverse dependence of the amplitudes U1 and U2 is not explicitly in-
dicated in the notation. Equation (49a) holds, however, whether U1 or U2 are off or on at
any given point in space. We will assume that the shear is small and that the detector is
large enough to accept all the light in both beams. The total power P incident on the de-
tector is the integral of I over its surface, or

P= Idxdy = f [U2 + U2 + 2U1 U2 COs 2iT(Ll - L) dxdy. (49b)

Since we are interested chiefly in the order of magnitude of the effect, it will be assumed
that the beams are of rectangular cross section and of uniform, equal amplitude. For beams
of y dimension b, and x dimension a, Eq. (49) immediately becomes

P =2baU2 L1 + I -)co - x(l-~ (49c)
[ a ) X ]'(4c

where the shear is taken to be of magnitude a and occurs in the x direction only. It is
clear from Eq. (49c) that the interferometer is insensitive to small variation of L1 - L2 for
L, - L2 equal to zero. However, if the path difference is increased by X/4, then for small
variations AS in the path, the corresponding signal component of the output is
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P = 2U2ab27r-,

and the noise component due to shear variation is

PN = 2U2 ab27r AL IT).

The S/N ratio is thus given by

Ps 1

PN a/a
(50)

Thus, for a shear variation of 2% of the diameter of the beam, the S/N ratio is 50, which is
satisfactory for present purposes. If a is 3 mm, then a turns out to be 60 jim. It would
appear that constraints on the pendulum motion could easily restrict lateral displacement to
a value less than this since the amplitude of the completely unconstrained pendulum motion
in the laboratory was less than this.

If the roof reflector consists of a right-angle prism, several other effects must be con-
sidered. Assume first that the prism is mathematically perfect, but that the light beam is
not normally incident on the first surface. The situation is shown in Fig. 8. Inspection of
the geometry of the figure shows that traversal through the prism is equivalent to propa-
gation through a slab with parallel faces. Thus, while for a hollow roof edge, rotation about
the vertex angle causes neither path change nor shear; for a prism roof edge, rotation causes
both path length change and shear. Both, however, are second-order effects in the angle of
incidence and may be made vanishingly small by precise alignment.

Fig. 8 - Diagram to determine effect of other
than normal incidence of beam on roof-edge
prism
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The next question which must be answered for the prism reflector is the effect of the
prism's not being isosceles. This may be investigated with the aid of Fig. 9. It follows easily
from the geometry that angle A = 20, and that therefore lines FF' and GG' are parallel, again
implying that the prism looks like a glass plate to the incident light beam. Therefore the
prism does not have to be accurately isosceles.

G

F F'

Fig. 9 - Diagram to determine effect of 7r/2 rad prism
which is not isosceles

Another possible error is that the front face of the prism leans with respect to the apex
angle. For purpose of calculation, assume that the beam is angled slightly with respect to
the front surface of the prism so that, inside, it travels perpendicularly with respect to the
vertex line. This situation is diagrammed in Fig. 10. It is of interest because the oscillation
of the pendulums results in a small vertical translation that causes the wedge shown to os-
cillate vertically in the beam. If the horizontal amplitude is 50 jim, then from the sagitta
formula, the corresponding vertical amplitude for a pendulum 25 cm long is 5 X 10-3 jum.
The path difference, in terms of fringes for double traversal of a wedge of angle 0, is

6 = 20(n - 1)dx
X X

(51)

Restricting the maximum path error to 10-3X at 0.6328 pm and setting dx = 5 X 10-3 jm,
we have 0 = 0.12 rad. This error is much larger than what would occur in a typical, well-
made prism.
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Fig. 10 - Diagram to determine effect of leaning of
front face of prism with respect to apex angle

The final prism error which must be treated is an error e in the apex angle. Figure 11
diagrams this situation. The effect on the beam is the same as it would be in traversing a
glass plate with wedge angle 2e. The error in waves is given by Eq. (51). For a 30-jim lat-
eral displacement and a path error of 10-3 fringes, e would be 2 X 10-5 rad. The fringe
spacing in the output fringes due to this cause alone would be 15 mm. However, since there
are four prisms involved, the fringe spacing would be about 1/4 of this value, or roughly
equal to the diameter of a typical beam. If it were desired to relax the accuracy require-
ments on the apex angle on the grounds that 30 ,um of compensation of lateral motion
against constraints was excessive, then an adjustable wedge (two matched wedges) could be
used in the lower beam path to adjust the fringe spacing so that it still remained sufficiently
large compared with the beam diameter.

4 RAD

Fig. 11 - Diagram to determine effect of
error in apex angle
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Pendulum Frequency-Tuning Monitor

The interferometer used to measure the response of the relative coordinate of the two
pendulums to the signal is not convenient for measuring the frequencies of the pendulums
during the frequency-matching adjustments. The interferometer is suitable for measuring
displacements that are small compared to the wavelength of light. But we have estimated
in previous sections that the ambient noise will probably not be reduced to that level unless
the frequencies are already matched. Before this condition obtains, small oscillation ampli-
tudes will not occur. The interferometer response to large amplitudes of motion will con-
sist of many cycles of sinusoidal oscillation. The period of such a waveform would be
harder to measure than one linearly related to the pendulum displacement. A device is re-
quired for which the basic unit of measurement is considerably larger than a wavelength of
light and larger than the amplitude to be measured. The moire fringes of a pair of Ronchi
rulings arranged as in Fig. 12 nicely satisfy this condition. The gratings are placed on the
pendulum tables so that the rulings are vertical. In this orientation they are maximimally
sensitive to the relative horizontal motion of the platforms, given the orientation of the two
external mirrors and the imaging lens set for unit magnification. The spacing of the rulings
and the amplitude of oscillation could be so chosen that the light transmission of the pair of
rulings was linear in the pendulum displacement after proper adjustment. In this case the
output of the detector system would be a sinusoidal signal, and the period of the sinusoid
could be measured with an electronic frequency counter. Since the optomechanical system
is symmetrical, repeated measurements could be made, alternating between the two pendu-
lums without readjusting the optical system.

g 1
Fig. 12 -Pendulum tuning monitor
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RADIOMETER FORCE

Historically, efforts to measure the pressure due to light were complicated by the radi-
ometer effect. The radiometer effect refers to the increase in pressure exerted on a heated
surface by a gas, above the pressure exerted when the surface is at the same temperature as
the gas itself. It arises because the gas molecules that collide with the surface are heated in
the process and leave the surface with greater momentum than they had before the encounter.
This explanation holds in the case of very low pressure where the mean free path is large com-
pared to the object of which the surface in question is a part, and compared to the dimen-
sions of the container of the object. In this case the maximum pressure increase (coefficient
of accommodation equals 1) is given by [6]

Ap =.p[(1 +AT )1I2 1] (52a)

which reduces, when AT/T is small, to

AP zt~ PAT *(52b)
4 T

It is of interest to calculate this pressure for the case of a satellite in an environmental
test chamber and compare it with the pressure due to solar radiation. This will be done for
a satellite skin of 0.79-mm-thick stainless steel. For an absorption coefficient of 0.1 and an
incident irradiance of 800 W/m2 , about 1.9 X 10-3 cal/sec cm2 are absorbed as heat. If
this is assumed to be uniformly distributed through the thickness of the skin, the magnitude
of the volume heat source is 2.4 X 10-2 cal/sec cm3. Since for stainless steel the density
p is 7.93 g/cm3 , and the specific heat capacity is 0.12 cal/g kelvin, the rate of temperature
rise is 2.5 X 10-2 kelvin/sec. For a source half-period of 2 sec, the temperature rise is
AT = 5 X 10-2 kelvins. Inserting this in Eq. (52b) gives

Ap = 4.2 X 10-5 p. (52c)

In an environmental test chamber that can duplicate atmospheric conditions at 200 km,
the pressure would be about 10-6 Torr, or 1.3 X 10-4 N/m 2 . From Eq. (52c), we have
Ap = 5.46 X 10-9 N/m 2 . This is about 1/500 times the estimated light pressure of 2.6 X
10-6 N/m2 . According to Eq. (52c), the gas pressure could be 10 times higher and the
radiometer force would still be small compared to the radiation pressure. Unfortunately,
Eq. (52a) does not hold at higher pressure. A more general relation is given by Knudsen [6],
but it contains four empirical constants unknown for the satellite-test chamber situation.
Thus, we are probably safe only in making estimates at the lower pressure since the mean
free path in that case, of the order of 60 m, is long enough to satisfy the conditions under
which Eq. (52a) is derived.
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SOLAR SIMULATION

The limiting accuracy in the force measurement procedure being considered is deter-
mined by the accuracy of solar simulation. The state of the art in solar simulation [7] is
such that beams over 6.1 m in diameter have been projected. Beams can be made uniform
to ± 5%. By filtering xenon arc lamps, we can obtain matches to the sun's spectrum above
the atmosphere sufficiently good that pressure errors for the spectrum as a whole may be

-as low as 3.5%. Thus, the errors contributed to the measurements by the simulator should
allow the force on a satellite to be measured to an accuracy of a few percent.

CONCLUSION

The analysis of this report indicates that a favorable S/N ratio for a simulation experi-
ment could probably be achieved on a vibration isolation table in a normal laboratory en-
vironment by taking advantage of mechanical common-moding techniques. This would allow
a proof-of-principle experiment to be performed that would result in experimental confirma-
tion or rejection of the feasibility of the approach to satellite solar radiation force measure-
ment developed here. However, before attempting to carry out force measurements on a
satellite, one would require detailed information on the ambient noise spectrum in the
vacuum test chamber selected for the measurements. The damping time of a large mass sus-
pended in the same way as that contemplated for the satellite should also be measured. From
this information, the S/N ratio achievable for various values of the common-mode rejection
ratio could be estimated, and the overall probability of success of the measurements pro-
cedure could be predicted.
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Appendix A

DERIVATION OF IDENTITIES FOR EQUATIONS (5a) AND (5b)

In this appendix, the identities used in Eqs. (5a) and (5b) are derived. We first compute
n-_1 exp (R01) sin Q02 and XI'M exp (Q01) cos Q02. The procedure is to write the sine and

cosine in complex form and then use the formula for the sum of a geometrical progression:

n-1

Z ego sin 202

Q=0

n-l ( 0 i0Q2 e-i20\

j e \ 2i 2i /
Q=0

1 1 - e ( + iO2 )n

2i 0 e 0 + i°2

1 1 - e(°0 - i02 )n)

2i 1e(r -i02)

When the numerator and denominator of each term are multiplied by the complex conjugate
of its denominator, this becomes

1 z [1 [-eole-i02 _ e0lneiO2 n + eOl(n+1)eio2(n1)

2i(1 - e0 2 cos 02 + e )

e~l e'02 + eO.,ne-0o2n _e01(n+1) e- i0,(n-1)1 

Rewriting the complex exponentials in terms of sines and cosines produces the final result:

Z eQ0l sin kO2

Q=0

el sin 02 - e'1n sin 02 n + e 0(n1) sin 02(n - 1) (A2)

1 - e'l 2 cos 02 + e201

In a similar manner, one finds that

e0 °l cos Q°2 = 1 - e 1 cos 02 - e01n cos 02 n + e0l(n+1) 0

Q1o e COS = 1 - e 0 2 cos 02 +e 26 1
2=0e
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Using Eqs. (A2) and (A3), we may compute the sums 2_; exp (0o1) cos (202 +
and 2i'Q- exp (Q01) sin (202 + 0). From the trigonometric identities for the sum of two
angles, we have

n-l n-l

e sin (202 + 4) = I e (sin Q02 cos 0 + cos 202 sin ¢)

2=0 k=0

n-l n-l

= cos ' ~ 'Xte1 sin 202 + sin 4'X e2 o cos 202.

B=0 s=0

By substituting the previously computed expressions for the sums, one immediately has

sin (202 + 4) = cos
1 - e 1 2 cos 02 + e20

1 - e 1 2 cos 02 + e20

In a similar fashion, one finds that

n-1

X e o cos(2O2 + 4) = cos 0 _

Q=0

- sin 6

1 - e 1 2 Cos 02 + e 21

1 - e01 2 cos 02 + e2°
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